Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genome Res ; 34(3): 426-440, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38621828

RESUMO

Genome structural variations within species are rare. How selective constraints preserve gene order and chromosome structure is a central question in evolutionary biology that remains unsolved. Our sequencing of several genomes of the appendicularian tunicate Oikopleura dioica around the globe reveals extreme genome scrambling caused by thousands of chromosomal rearrangements, although showing no obvious morphological differences between these animals. The breakpoint accumulation rate is an order of magnitude higher than in ascidian tunicates, nematodes, Drosophila, or mammals. Chromosome arms and sex-specific regions appear to be the primary unit of macrosynteny conservation. At the microsyntenic level, scrambling did not preserve operon structures, suggesting an absence of selective pressure to maintain them. The uncoupling of the genome scrambling with morphological conservation in O. dioica suggests the presence of previously unnoticed cryptic species and provides a new biological system that challenges our previous vision of speciation in which similar animals always share similar genome structures.


Assuntos
Genoma , Urocordados , Animais , Urocordados/genética , Urocordados/classificação , Evolução Molecular , Feminino , Filogenia , Masculino , Sintenia
2.
Nat Commun ; 14(1): 5475, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37673908

RESUMO

The analysis of microbial genomes from human archaeological samples offers a historic snapshot of ancient pathogens and provides insights into the origins of modern infectious diseases. Here, we analyze metagenomic datasets from 38 human archaeological samples and identify bacterial genomic sequences related to modern-day Clostridium tetani, which produces the tetanus neurotoxin (TeNT) and causes the disease tetanus. These genomic assemblies had varying levels of completeness, and a subset of them displayed hallmarks of ancient DNA damage. Phylogenetic analyses revealed known C. tetani clades as well as potentially new Clostridium lineages closely related to C. tetani. The genomic assemblies encode 13 TeNT variants with unique substitution profiles, including a subgroup of TeNT variants found exclusively in ancient samples from South America. We experimentally tested a TeNT variant selected from an ancient Chilean mummy sample and found that it induced tetanus muscle paralysis in mice, with potency comparable to modern TeNT. Thus, our ancient DNA analysis identifies DNA from neurotoxigenic C. tetani in archaeological human samples, and a novel variant of TeNT that can cause disease in mammals.


Assuntos
DNA Antigo , Tétano , Humanos , Animais , Camundongos , Neurotoxinas , Filogenia , Clostridium , Chile , Mamíferos
3.
Commun Biol ; 5(1): 375, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440624

RESUMO

Diphtheria toxin (DT) is the archetype for bacterial exotoxins implicated in human diseases and has played a central role in defining the field of toxinology since its discovery in 1888. Despite being one of the most extensively characterized bacterial toxins, the origins and evolutionary adaptation of DT to human hosts remain unknown. Here, we determined the first high-resolution structures of DT homologs outside of the Corynebacterium genus. DT homologs from Streptomyces albireticuli (17% identity to DT) and Seinonella peptonophila (20% identity to DT), despite showing no toxicity toward human cells, display significant structural similarities to DT sharing both the overall Y-shaped architecture of DT as well as the individual folds of each domain. Through a systematic investigation of individual domains, we show that the functional determinants of host range extend beyond an inability to bind cellular receptors; major differences in pH-induced pore-formation and cytosolic release further dictate the delivery of toxic catalytic moieties into cells, thus providing multiple mechanisms for a conserved structural fold to adapt to different hosts. Our work provides structural insights into the expanding DT family of toxins, and highlights key transitions required for host adaptation.


Assuntos
Toxinas Bacterianas , Toxina Diftérica , Toxina Diftérica/química , Toxina Diftérica/genética , Toxina Diftérica/toxicidade , Humanos
4.
BMC Genomics ; 22(1): 222, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33781200

RESUMO

BACKGROUND: The larvacean Oikopleura dioica is an abundant tunicate plankton with the smallest (65-70 Mbp) non-parasitic, non-extremophile animal genome identified to date. Currently, there are two genomes available for the Bergen (OdB3) and Osaka (OSKA2016) O. dioica laboratory strains. Both assemblies have full genome coverage and high sequence accuracy. However, a chromosome-scale assembly has not yet been achieved. RESULTS: Here, we present a chromosome-scale genome assembly (OKI2018_I69) of the Okinawan O. dioica produced using long-read Nanopore and short-read Illumina sequencing data from a single male, combined with Hi-C chromosomal conformation capture data for scaffolding. The OKI2018_I69 assembly has a total length of 64.3 Mbp distributed among 19 scaffolds. 99% of the assembly is contained within five megabase-scale scaffolds. We found telomeres on both ends of the two largest scaffolds, which represent assemblies of two fully contiguous autosomal chromosomes. Each of the other three large scaffolds have telomeres at one end only and we propose that they correspond to sex chromosomes split into a pseudo-autosomal region and X-specific or Y-specific regions. Indeed, these five scaffolds mostly correspond to equivalent linkage groups in OdB3, suggesting overall agreement in chromosomal organization between the two populations. At a more detailed level, the OKI2018_I69 assembly possesses similar genomic features in gene content and repetitive elements reported for OdB3. The Hi-C map suggests few reciprocal interactions between chromosome arms. At the sequence level, multiple genomic features such as GC content and repetitive elements are distributed differently along the short and long arms of the same chromosome. CONCLUSIONS: We show that a hybrid approach of integrating multiple sequencing technologies with chromosome conformation information results in an accurate de novo chromosome-scale assembly of O. dioica's highly polymorphic genome. This genome assembly opens up the possibility of cross-genome comparison between O. dioica populations, as well as of studies of chromosomal evolution in this lineage.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , Urocordados , Animais , Genoma , Masculino , Telômero/genética , Urocordados/genética
5.
ERJ Open Res ; 6(4)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33344628

RESUMO

Cannabis smoking is the dominant route of delivery, with the airway epithelium functioning as the site of first contact. The endocannabinoid system is responsible for mediating the physiological effects of inhaled phytocannabinoids. The expression of the endocannabinoid system in the airway epithelium and contribution to normal physiological responses remains to be defined. To begin to address this knowledge gap, a curated dataset of 1090 unique human bronchial brushing gene expression profiles was created. The dataset included 616 healthy subjects, 136 subjects with asthma, and 338 subjects with COPD. A 32-gene endocannabinoid signature was analysed across all samples with sex and disease-specific analyses performed. Immunohistochemistry and immunoblots were performed to probe in situ and in vitro protein expression. CB1, CB2, and TRPV1 protein signal is detectable in human airway epithelial cells in situ and in vitro, justifying examining the downstream endocannabinoid pathway. Sex status was associated with differential expression of 7 of 32 genes. In contrast, disease status was associated with differential expression of 21 of 32 genes in people with asthma and 26 of 32 genes in people with COPD. We confirm at the protein level that TRPV1, the most differentially expressed candidate in our analyses, was upregulated in airway epithelial cells from people with asthma relative to healthy subjects. Our data demonstrate that the endocannabinoid system is expressed in human airway epithelial cells with expression impacted by disease status and minimally by sex. The data suggest that cannabis consumers may have differential physiological responses in the respiratory mucosa.

6.
PLoS Pathog ; 16(12): e1009181, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33370413

RESUMO

Clostridioides difficile is the major worldwide cause of antibiotic-associated gastrointestinal infection. A pathogenicity locus (PaLoc) encoding one or two homologous toxins, toxin A (TcdA) and toxin B (TcdB), is essential for C. difficile pathogenicity. However, toxin sequence variation poses major challenges for the development of diagnostic assays, therapeutics, and vaccines. Here, we present a comprehensive phylogenomic analysis of 8,839 C. difficile strains and their toxins including 6,492 genomes that we assembled from the NCBI short read archive. A total of 5,175 tcdA and 8,022 tcdB genes clustered into 7 (A1-A7) and 12 (B1-B12) distinct subtypes, which form the basis of a new method for toxin-based subtyping of C. difficile. We developed a haplotype coloring algorithm to visualize amino acid variation across all toxin sequences, which revealed that TcdB has diversified through extensive homologous recombination throughout its entire sequence, and formed new subtypes through distinct recombination events. In contrast, TcdA varies mainly in the number of repeats in its C-terminal repetitive region, suggesting that recombination-mediated diversification of TcdB provides a selective advantage in C. difficile evolution. The application of toxin subtyping is then validated by classifying 351 C. difficile clinical isolates from Brigham and Women's Hospital in Boston, demonstrating its clinical utility. Subtyping partitions TcdB into binary functional and antigenic groups generated by intragenic recombinations, including two distinct cell-rounding phenotypes, whether recognizing frizzled proteins as receptors, and whether it can be efficiently neutralized by monoclonal antibody bezlotoxumab, the only FDA-approved therapeutic antibody. Our analysis also identifies eight universally conserved surface patches across the TcdB structure, representing ideal targets for developing broad-spectrum therapeutics. Finally, we established an open online database (DiffBase) as a central hub for collection and classification of C. difficile toxins, which will help clinicians decide on therapeutic strategies targeting specific toxin variants, and allow researchers to monitor the ongoing evolution and diversification of C. difficile.


Assuntos
Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Clostridioides difficile/genética , Enterotoxinas/genética , Evolução Molecular , Recombinação Genética/fisiologia , Variação Antigênica/genética , Proteínas de Bactérias/química , Toxinas Bacterianas/química , Clostridioides difficile/classificação , Clostridioides difficile/patogenicidade , Bases de Dados Genéticas , Enterotoxinas/química , Variação Genética , Genoma Bacteriano/genética , Humanos , Modelos Moleculares , Filogenia , Conformação Proteica , Análise de Sequência de DNA
7.
Sci Rep ; 10(1): 19052, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149258

RESUMO

Flagellins are the protein components of bacterial flagella and assemble in up to 20,000 copies to form extracellular flagellar filaments. An unusual family of flagellins was recently discovered that contains a unique metalloprotease domain within its surface-exposed hypervariable region. To date, these proteolytic flagellins (also termed flagellinolysins) have only been characterized in the Gram-positive organism Clostridium haemolyticum, where flagellinolysin was shown to be proteolytically active and capable of cleaving extracellular protein substrates. The biological function of flagellinolysin and its activity in other organisms, however, remain unclear. Here, using molecular biochemistry and proteomics, we have performed an initial characterization of a novel flagellinolysin identified from Hylemonella gracilis, a Gram-negative organism originally isolated from pond water. We demonstrate that H. gracilis flagellinolysin (HgrFlaMP) is an active calcium-dependent zinc metallopeptidase and characterize its cleavage specificity profile using both trypsin and GluC-derived peptide libraries and protein substrates. Based on high-throughput degradomic assays, HgrFlaMP cleaved 784 unique peptides and displayed a cleavage site specificity similar to flagellinolysin from C. haemolyticum. Additionally, by using a set of six protein substrates, we identified 206 protein-embedded cleavage sites, further refining the substrate preference of HgrFlaMP, which is dominated by large hydrophobic amino acids in P1', and small hydrophobic or medium-sized polar residues on the amino-terminal side of the scissile bond. Intriguingly, recombinant HgrFlaMP was also capable of cleaving full-length flagellins from another species, suggesting its potential involvement in interbacterial interactions. Our study reports the first experimentally characterized proteolytic flagellin in a Gram-negative organism, and provides new insights into flagellum-mediated enzymatic activity.


Assuntos
Comamonadaceae/metabolismo , Flagelina/metabolismo , Água Doce/microbiologia , Microbiologia da Água , Aminoácidos , Comamonadaceae/classificação , Comamonadaceae/genética , Flagelina/genética , Genoma Bacteriano , Fases de Leitura Aberta , Filogenia , Proteólise , Proteoma , Proteômica/métodos , Especificidade por Substrato
8.
J Gen Virol ; 101(12): 1251-1260, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32902372

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently emerged to cause widespread infections in humans. SARS-CoV-2 infections have been reported in the Kingdom of Saudi Arabia, where Middle East respiratory syndrome coronavirus (MERS-CoV) causes seasonal outbreaks with a case fatality rate of ~37 %. Here we show that there exists a theoretical possibility of future recombination events between SARS-CoV-2 and MERS-CoV RNA. Through computational analyses, we have identified homologous genomic regions within the ORF1ab and S genes that could facilitate recombination, and have analysed co-expression patterns of the cellular receptors for SARS-CoV-2 and MERS-CoV, ACE2 and DPP4, respectively, to identify human anatomical sites that could facilitate co-infection. Furthermore, we have investigated the likely susceptibility of various animal species to MERS-CoV and SARS-CoV-2 infection by comparing known virus spike protein-receptor interacting residues. In conclusion, we suggest that a recombination between SARS-CoV-2 and MERS-CoV RNA is possible and urge public health laboratories in high-risk areas to develop diagnostic capability for the detection of recombined coronaviruses in patient samples.


Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Vírus Reordenados , SARS-CoV-2/genética , Animais , Sequência de Bases , Coinfecção , Regulação Viral da Expressão Gênica , Genoma Viral , Especificidade de Hospedeiro , Humanos , Modelos Moleculares , Filogenia , Conformação Proteica , Receptores de Superfície Celular , Recombinação Genética , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
9.
Eur Respir J ; 56(3)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32675206

RESUMO

In December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged, causing the coronavirus disease 2019 (COVID-19) pandemic. SARS-CoV, the agent responsible for the 2003 SARS outbreak, utilises angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) host molecules for viral entry. ACE2 and TMPRSS2 have recently been implicated in SARS-CoV-2 viral infection. Additional host molecules including ADAM17, cathepsin L, CD147 and GRP78 may also function as receptors for SARS-CoV-2.To determine the expression and in situ localisation of candidate SARS-CoV-2 receptors in the respiratory mucosa, we analysed gene expression datasets from airway epithelial cells of 515 healthy subjects, gene promoter activity analysis using the FANTOM5 dataset containing 120 distinct sample types, single cell RNA sequencing (scRNAseq) of 10 healthy subjects, proteomic datasets, immunoblots on multiple airway epithelial cell types, and immunohistochemistry on 98 human lung samples.We demonstrate absent to low ACE2 promoter activity in a variety of lung epithelial cell samples and low ACE2 gene expression in both microarray and scRNAseq datasets of epithelial cell populations. Consistent with gene expression, rare ACE2 protein expression was observed in the airway epithelium and alveoli of human lung, confirmed with proteomics. We present confirmatory evidence for the presence of TMPRSS2, CD147 and GRP78 protein in vitro in airway epithelial cells and confirm broad in situ protein expression of CD147 and GRP78 in the respiratory mucosa.Collectively, our data suggest the presence of a mechanism dynamically regulating ACE2 expression in human lung, perhaps in periods of SARS-CoV-2 infection, and also suggest that alternative receptors for SARS-CoV-2 exist to facilitate initial host cell infection.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus , Pandemias , Peptidil Dipeptidase A , Pneumonia Viral , Serina Endopeptidases , Enzima de Conversão de Angiotensina 2 , COVID-19 , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Chaperona BiP do Retículo Endoplasmático , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Humanos , Pulmão/metabolismo , Pulmão/virologia , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Receptores Virais/classificação , Receptores Virais/genética , Receptores Virais/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia , SARS-CoV-2 , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Internalização do Vírus
10.
mSystems ; 5(2)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345738

RESUMO

Despite progress understanding microbial communities involved in terrestrial vertebrate decomposition, little is known about the microbial decomposition of aquatic vertebrates from a functional and environmental context. Here, we analyzed temporal changes in the "necrobiome" of rainbow darters, which are common North American fish that are sensitive indicators of water quality. By combining 16S rRNA gene and shotgun metagenomic sequence data from four time points, we studied the progression of decomposers from both taxonomic and functional perspectives. The 16S rRNA gene profiles revealed strong community succession, with early decomposition stages associated with Aeromonas and Clostridium taxa and later stages dominated by members of the Rikenellaceae (i.e., Alistipes/Acetobacteroides genera). These results were reproducible and independent of environmental perturbation, given that exposure to wastewater treatment plant effluent did not substantially influence the necrobiome composition of fish or the associated water sample microbiota. Metagenomic analysis revealed significant changes throughout decomposition in degradation pathways for amino acids, carbohydrates/glycans, and other compounds, in addition to putrefaction pathways for production of putrescine, cadaverine, and indole. Binning of contigs confirmed a predominance of Aeromonas genome assemblies, including those from novel strains related to the pathogen Aeromonas veronii These bins of Aeromonas genes also encoded known hemolysin toxins (e.g., aerolysin) that were particularly abundant early in the process, potentially contributing to host cell lysis during decomposition. Overall, our results demonstrate that wild-caught fish have a reproducible decomposer succession and that the fish necrobiome serves as a potential source of putative pathogens and toxigenic bacteria.IMPORTANCE The microbial decomposition of animal tissues is an important ecological process that impacts nutrient cycling in natural environments. We studied the microbial decomposition of a common North American fish (rainbow darters) over four time points, combining 16S rRNA gene and shotgun metagenomic sequence data to obtain both taxonomic and functional perspectives. Our data revealed a strong community succession that was reproduced across different fish and environments. Decomposition time point was the main driver of community composition and functional potential; fish environmental origin (upstream or downstream of a wastewater treatment plant) had a secondary effect. We also identified strains related to the putative pathogen Aeromonas veronii as dominant members of the decomposition community. These bacteria peaked early in decomposition and coincided with the metagenomic abundance of hemolytic toxin genes. Our work reveals a strong decomposer succession in wild-caught fish, providing functional and taxonomic insights into the vertebrate necrobiome.

11.
Microbiol Resour Announc ; 9(16)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32299893

RESUMO

Eubacterium tarantellae was originally cultivated from the brain of fish affected by twirling movements. Here, we present the draft genome sequence of E. tarantellae DSM 3997, which consists of 3,982,316 bp. Most protein-coding genes in this strain are similar to genes of Clostridium bacteria, supporting the renaming of E. tarantellae as Clostridium tarantellae.

12.
Nat Commun ; 11(1): 432, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974369

RESUMO

Large Clostridial Toxins (LCTs) are a family of six homologous protein toxins that are implicated in severe disease. LCTs infiltrate host cells using a translocation domain (LCT-T) that contains both cell-surface receptor binding sites and a membrane translocation apparatus. Despite much effort, LCT translocation remains poorly understood. Here we report the identification of 1104 LCT-T homologs, with 769 proteins from bacteria outside of clostridia. Sequences are widely distributed in pathogenic and host-associated species, in a variety of contexts and architectures. Consistent with these homologs being functional toxins, we show that a distant LCT-T homolog from Serratia marcescens acts as a pH-dependent translocase to deliver its effector into host cells. Based on evolutionary footprinting of LCT-T homologs, we further define an evolutionarily conserved translocase region that we show is an autonomous translocase capable of delivering heterologous cargo into host cells. Our work uncovers a broad class of translocating toxins and provides insights into LCT translocation.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Evolução Biológica , Clostridioides difficile/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Chlorocebus aethiops , Dicroísmo Circular , Clostridioides difficile/patogenicidade , Sequência Conservada , Evolução Molecular , Células HCT116 , Interações Hospedeiro-Patógeno , Humanos , Concentração de Íons de Hidrogênio , Domínios Proteicos , Transporte Proteico , Homologia de Sequência de Aminoácidos , Serratia marcescens/metabolismo , Serratia marcescens/patogenicidade , Células Vero
13.
mSystems ; 4(3)2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117023

RESUMO

The molecular evolution of virulence factors is a central theme in our understanding of bacterial pathogenesis and host-microbe interactions. Using bioinformatics and genome data mining, recent studies have shed light on the evolution of important virulence factor families and the mechanisms by which they have adapted and diversified in function. This perspective highlights three complementary approaches useful for studying the molecular evolution of virulence factors: identification and analysis of virulence factor homologs, detection of adaptations or functional shifts, and computational prediction of novel virulence factor families. Each of these research directions is associated with distinct questions, approaches, and challenges for future work. Moving forward, bioinformatics will continue to play a critical role in exploring the evolution of virulence factors, including those that target humans. By reconstructing past processes and events, we will be able to better interpret newly sequenced microbial genomes and detect future pathoadaptations.

15.
FEBS Lett ; 592(16): 2693-2705, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30058084

RESUMO

Diphtheria toxin (DT), produced by Corynebacterium diphtheria, is the causative agent of diphtheria and one of the most potent protein toxins known; however, it has an unclear evolutionary history. Here, we report the discovery of a DT-like gene family in several bacterial lineages outside of Corynebacterium, including Austwickia and Streptomyces. These DT-like genes form sister lineages in the DT phylogeny and conserve key DT features including catalytic and translocation motifs, but possess divergent receptor-binding domains. DT-like genes are not associated with corynephage, but have undergone lateral transfer through a separate mechanism. The discovery of the first non-Corynebacterium homologs of DT sheds light on its evolutionary origin and highlights novelties that may have resulted in the emergence of DT targeting humans.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Streptomyces/metabolismo , Actinobacteria/genética , Actinobacteria/metabolismo , Toxinas Bacterianas/metabolismo , Domínio Catalítico , Clonagem Molecular , Corynebacterium/genética , Corynebacterium/metabolismo , Toxina Diftérica/genética , Evolução Molecular , Transferência Genética Horizontal , Modelos Moleculares , Família Multigênica , Filogenia , Conformação Proteica , Streptomyces/genética
16.
Pathog Dis ; 76(4)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29684130

RESUMO

Clostridial neurotoxins, which include botulinum neurotoxins (BoNTs) and tetanus neurotoxins, have evolved a remarkably sophisticated structure and molecular mechanism fine-tuned for the targeting and cleavage of vertebrate neuron substrates leading to muscular paralysis. How and why did this toxin evolve? From which ancestral proteins are BoNTs derived? And what is, or was, the primary ecological role of BoNTs in the environment? In this article, we examine these questions in light of recent studies identifying homologs of BoNTs in the genomes of non-clostridial bacteria, including Weissella, Enterococcus and Chryseobacterium. Genomic and phylogenetic analysis of these more distantly related toxins suggests that they are derived from ancient toxin lineages that predate the evolution of BoNTs and are not limited to the Clostridium genus. We propose that BoNTs have therefore evolved from a precursor family of BoNT-like toxins, and ultimately from non-neurospecific toxins that cleaved different substrates (possibly non-neuronal SNAREs). Comparison of BoNTs with these related toxins reveals several unique molecular features that underlie the evolution of BoNT's unique function, including functional shifts involving all four domains, and gain of the BoNT gene cluster associated proteins. BoNTs then diversified to produce the existing serotypes, including TeNT, and underwent repeated substrate shifts from ancestral VAMP2 specificity to SNAP25 specificity at least three times in their history. Finally, similar to previous proposals, we suggest that one ecological role of BoNTs could be to create a paralytic phase in vertebrate decomposition, which provides a competitive advantage for necrophagous scavengers that in turn facilitate the spread of Clostridium botulinum and its toxin.


Assuntos
Clostridium botulinum/genética , Clostridium tetani/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Metaloendopeptidases/genética , Toxina Tetânica/genética , Chryseobacterium/classificação , Chryseobacterium/genética , Chryseobacterium/patogenicidade , Clostridium botulinum/classificação , Clostridium botulinum/patogenicidade , Clostridium tetani/classificação , Clostridium tetani/patogenicidade , Enterococcus/classificação , Enterococcus/genética , Enterococcus/patogenicidade , Evolução Molecular , Loci Gênicos , Interações Hospedeiro-Patógeno , Humanos , Metaloendopeptidases/biossíntese , Família Multigênica , Filogenia , Toxina Tetânica/biossíntese , Weissella/classificação , Weissella/genética , Weissella/patogenicidade
17.
Cell Host Microbe ; 23(2): 169-176.e6, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29396040

RESUMO

Botulinum neurotoxins (BoNTs), produced by various Clostridium strains, are a family of potent bacterial toxins and potential bioterrorism agents. Here we report that an Enterococcus faecium strain isolated from cow feces carries a BoNT-like toxin, designated BoNT/En. It cleaves both VAMP2 and SNAP-25, proteins that mediate synaptic vesicle exocytosis in neurons, at sites distinct from known BoNT cleavage sites on these two proteins. Comparative genomic analysis determines that the E. faecium strain carrying BoNT/En is a commensal type and that the BoNT/En gene is located within a typical BoNT gene cluster on a 206 kb putatively conjugative plasmid. Although the host species targeted by BoNT/En remains to be determined, these findings establish an extended member of BoNTs and demonstrate the capability of E. faecium, a commensal organism ubiquitous in humans and animals and a leading cause of hospital-acquired multi-drug-resistant (MDR) infections, to horizontally acquire, and possibly disseminate, a unique BoNT gene cluster.


Assuntos
Toxinas Botulínicas/genética , Toxinas Botulínicas/toxicidade , Enterococcus faecium/genética , Enterococcus faecium/patogenicidade , Proteína 25 Associada a Sinaptossoma/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Animais , Toxinas Botulínicas/isolamento & purificação , Bovinos , Linhagem Celular , Fezes/microbiologia , Feminino , Genoma Bacteriano/genética , Células HEK293 , Humanos , Masculino , Camundongos , Família Multigênica/genética , Neurônios/patologia , Plasmídeos/genética , Ratos , Ratos Sprague-Dawley
18.
Toxicon ; 147: 2-12, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29438679

RESUMO

Hundreds and hundreds of bacterial protein toxins are presently known. Traditionally, toxin identification begins with pathological studies of bacterial infectious disease. Following identification and cultivation of a bacterial pathogen, the protein toxin is purified from the culture medium and its pathogenic activity is studied using the methods of biochemistry and structural biology, cell biology, tissue and organ biology, and appropriate animal models, supplemented by bioimaging techniques. The ongoing and explosive development of high-throughput DNA sequencing and bioinformatic approaches have set in motion a revolution in many fields of biology, including microbiology. One consequence is that genes encoding novel bacterial toxins can be identified by bioinformatic and computational methods based on previous knowledge accumulated from studies of the biology and pathology of thousands of known bacterial protein toxins. Starting from the paradigmatic cases of diphtheria toxin, tetanus and botulinum neurotoxins, this review discusses traditional experimental approaches as well as bioinformatics and genomics-driven approaches that facilitate the discovery of novel bacterial toxins. We discuss recent work on the identification of novel botulinum-like toxins from genera such as Weissella, Chryseobacterium, and Enteroccocus, and the implications of these computationally identified toxins in the field. Finally, we discuss the promise of metagenomics in the discovery of novel toxins and their ecological niches, and present data suggesting the existence of uncharacterized, botulinum-like toxin genes in insect gut metagenomes.


Assuntos
Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/toxicidade , Biologia Computacional , Genômica , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/toxicidade , Regulação Bacteriana da Expressão Gênica , Humanos
19.
Nat Commun ; 8(1): 521, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900095

RESUMO

Bacterial flagella are cell locomotion and occasional adhesion organelles composed primarily of the polymeric protein flagellin, but to date have not been associated with any enzymatic function. Here, we report the bioinformatics-driven discovery of a class of enzymatic flagellins that assemble to form proteolytically active flagella. Originating by a metallopeptidase insertion into the central flagellin hypervariable region, this flagellin family has expanded to at least 74 bacterial species. In the pathogen, Clostridium haemolyticum, metallopeptidase-containing flagellin (which we termed flagellinolysin) is the second most abundant protein in the flagella and is localized to the extracellular flagellar surface. Purified flagellar filaments and recombinant flagellin exhibit proteolytic activity, cleaving nearly 1000 different peptides. With ~ 20,000 flagellin copies per ~ 10-µm flagella this assembles the largest proteolytic complex known. Flagellum-mediated extracellular proteolysis expands our understanding of the functional plasticity of bacterial flagella, revealing this family as enzymatic biopolymers that mediate interactions with diverse peptide substrates.So far no enzymatic activity has been attributed to flagellin, the major component of bacterial flagella. Here the authors use bioinformatic analysis and identify a metallopeptidase insertion in flagellins from 74 bacterial species and show that recombinant flagellin and flagellar filaments have proteolytic activity.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Flagelina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Clostridium/metabolismo , Biologia Computacional/métodos , Flagelina/química , Flagelina/genética , Genoma Bacteriano , Metaloendopeptidases/química , Metaloendopeptidases/metabolismo , Modelos Moleculares , Filogenia , Conformação Proteica , Domínios Proteicos
20.
Bioinformatics ; 33(9): 1338-1345, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28052926

RESUMO

Motivation: Spatially clustered mutations within specific regions of protein structure are thought to result from strong positive selection for altered protein functions and are a common feature of oncoproteins in cancer. Although previous studies have used spatial substitution clustering to identify positive selection between pairs of proteins, the ability of this approach to identify functional shifts in protein phylogenies has not been explored. Results: We implemented a previous measure of spatial substitution clustering (the P3D statistic) and extended it to detect spatially clustered substitutions at specific branches of phylogenetic trees. We then applied the analysis to 423 690 phylogenetic branches from 9261 vertebrate protein families, and examined its ability to detect historical shifts in protein function. Our analysis identified 19 607 lineages from 5362 protein families in which substitutions were spatially clustered on protein structures at P3D < 0.01. Spatially clustered substitutions were overrepresented among ligand-binding residues and were significantly enriched among particular protein families and functions including C2H2 transcription factors and protein kinases. A small but significant proportion of branches with spatially clustered substitution also were under positive selection according to the branch-site test. Lastly, exploration of the top-scoring candidates revealed historical substitution events in vertebrate protein families that have generated new functions and protein interactions, including ancient adaptations in SLC7A2, PTEN, and SNAP25 . Ultimately, our work shows that lineage-specific, spatially clustered substitutions are a useful feature for identifying functional shifts in protein families, and reveal new candidates for future experimental study. Availability and Implementation: Source code and predictions for analyses performed in this study are available at: https://github.com/doxeylab/evoclust3d. Contact: acdoxey@uwaterloo.ca. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Evolução Molecular , Mutação , Filogenia , Proteínas/genética , Software , Animais , Plantas/genética , Plantas/metabolismo , Conformação Proteica , Proteínas/metabolismo , Proteínas/fisiologia , Vertebrados/genética , Vertebrados/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA